Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.
На практике к несинусоидальности напряжений и токов следует подходить двояко:
В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.
Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.
В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).
Характеристики несинусоидальных величин
Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):
Разложение периодических несинусоидальных
кривых в ряд Фурье
Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая
условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить,
что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют,
в связи с чем проверку на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
![]() |
(1) |
Здесь - постоянная составляющая или
нулевая гармоника;
- первая (основная) гармоника,
изменяющаяся с угловой частотой
, где Т – период несинусоидальной
периодической функции.
В выражении (1) , где коэффициенты
и
определяются по формулам
;
.
Свойства периодических кривых, обладающих симметрией
Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.
К данному типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 2). В их
разложении отсутствуют постоянная составляющая и четные гармоники, т.е.
.
К данному типу относятся кривые, для которых выполняется равенство (см. пример на рис. 3). В их
разложении отсутствуют синусные составляющие, т.е.
.
К этому типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 4). При разложении
таких кривых отсутствуют постоянная и косинусные составляющие, т.е.
.
Действующее значение периодической несинусоидальной переменной
Как было показано выше, действующим называется среднеквадратичное за период значение величины:
.
При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о действующих значениях конечного ряда гармонических.
Пусть . Тогда
Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,
или
.
Аналогичные выражения имеют место для ЭДС, напряжения и т.д.
Мощность в цепях периодического несинусоидального тока
Пусть и
.
Тогда для активной мощности можно записать
.
Как было показано при выводе соотношения для действующего значения несинусоидальной переменной, среднее за период значение произведения синусоидальных функций различной частоты равно нулю. Следовательно,
,
где .
Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармонических:
.
Аналогично для реактивной мощности можно записать
.
Полная мощность
,
где Т – мощность искажений, определяемая произведениями действующих значений разнопорядковых гармонических тока и напряжения.
Методика расчета линейных цепей при периодических несинусоидальных токах
Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС
(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.
Здесь .
Тогда, например, для тока в ветви с источником ЭДС, имеем
,
где каждая к-я гармоника тока рассчитывается символическим методом по своей
к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех
гармоник параметры и С постоянны.
;
.
Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.
Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:
Литература
Контрольные вопросы
Ответ: .
Ответ: U=218 В; Р=1260 Вт.
Ответ: I=5,5 A.