Объединяя оба случая, получим
![]() |
(1) |
или для постоянного тока
![]() |
(2) |
Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.
Основы символического метода расчета цепей
синусоидального тока
Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности.
Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме.
Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин.
1. Первый закон Кирхгофа в комплексной форме:
![]() |
(3) |
2. Второй закон Кирхгофа в комплексной форме:
![]() |
(4) |
или применительно к схемам замещения с источниками ЭДС
![]() |
(5) |
3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид:
§ первый закон Кирхгофа:
.![]() |
(6) |
§ второй закон Кирхгофа
![]() |
(7) |
Пример.
Дано:
Рис. 2
![]() ![]() ![]() |
![]() ![]() ![]() |
Определить:
1) полное комплексное сопротивление цепи ![]() 2) токи ![]() |
Решение:
1.
.
2.
.
3.
.
4. Принимая начальную фазу напряжения за нуль, запишем:
.
Тогда
.
5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то
6.
.
7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме
![]() |
![]() |
или после подстановки численных значений параметров схемы
Специальные методы расчета
Режим работы любой цепи полностью характеризуется уравнениями, составленными на основании законов Кирхгофа. При этом необходимо составить и решить систему с n неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если воспользоваться специальными методами расчета, к которым относятся методы контурных токов и узловых потенциалов.
Метод контурных токов
Идея метода контурных токов: уравнения составляются только по второму закону
Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих
по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей
связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи
графа . Первый закон Кирхгофа выполняется автоматически.
Контуры можно выбирать произвольно, лишь бы их число было равно
и чтобы каждый новый контур содержал хотя
бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми.
Их выбор облегчает использование топологических понятий дерева и ветвей связи.
Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.
Пусть имеем схему по рис. 3.
Выразим токи ветвей через контурные токи:
;
;
;
;
.
Обойдя контур aeda, по второму закону Кирхгофа имеем
.
Поскольку ,
то
.
Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров:
совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.
Однако данная система уравнений может быть составлена формальным путем:
При составлении уравнений необходимо помнить следующее:
- сумма сопротивлений, входящих в
i-й контур;
- сумма сопротивлений, общих для i-го и k-го контуров, причем
;
члены на главной диагонали всегда пишутся со знаком “+”;
знак “+” перед остальными членами ставится в случае, если через общее сопротивление
i-й и k-
й контурные токи проходят в одном направлении, в противном случае ставится знак
“-”;
если i-й и k- й контуры не имеют общих сопротивлений, то ;
в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает.
В нашем случае, для первого уравнения системы, имеем:
Следует обратить внимание на то, что, поскольку , коэффициенты контурных уравнений всегда
симметричны относительно главной диагонали.
Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются
в левых частях уравнений как известные контурные токи: k- й контурный ток, проходящий через ветвь с k-
м источником тока равен этому току .
Метод узловых потенциалов
Данный метод вытекает из первого закона Кирхгофа.
В качестве неизвестных принимаются потенциалы узлов, по найденным значениям
которых с помощью закона Ома для участка цепи с источником ЭДС затем находят
токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного
из узлов (любого) принимается равным нулю. Таким образом, число неизвестных
потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева
.
Пусть имеем схему по рис. 4, в которой примем
.
Допустим, что и
известны. Тогда значения токов на основании
закона Ома для участка цепи с источником ЭДС
Запишем уравнение по первому закону Кирхгофа для узла а:
и подставим значения входящих в него токов, определенных выше:
.
Сгруппировав соответствующие члены, получим:
.
Аналогично можно записать для узла b:
.
Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:
1. В
левой части i-го
уравнения записывается со знаком “+”потенциал i-го узла, для которого составляется данное
i-е уравнение, умноженный на сумму проводимостей
ветвей, присоединенных к данному i-му узлу, и со знаком “-”потенциал
соседних узлов, каждый из которых умножен
на сумму проводимостей
ветвей, присоединенных к i-му
и k-му узлам.
Из сказанного следует, что все члены
, стоящие на главной диагонали в левой части
системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”,
причем
. Последнее равенство по аналогии с методом
контурных токов обеспечивает симметрию коэффициентов уравнений относительно
главной диагонали.
2. В
правой части i-го
уравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих
к i-му узлу, и проводимостей этих ветвей. При этом член суммы записывается
со знаком “+”, если соответствующая ЭДС направлена к i-му узлу, в противном случае ставится знак “-”. Если в подходящих
к i-му узлу ветвях содержатся источники тока,
то знаки токов источников токов, входящих в узловой ток простыми слагаемыми,
определяются аналогично.
В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.
Литература
1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с
.
Контрольные вопросы и задачи
1. В
ветви на рис. 1
. Определить ток
.
Ответ: .
2. В чем заключается сущность символического метода расчета цепей синусоидального тока?
3. В чем состоит сущность метода контурных токов?
4. В чем состоит сущность метода узловых потенциалов?
5.
В цепи на рис. 5 ;
;
Ответ: ;
;
.
6. В
цепи на рис. 6
. Рассчитать токи в ветвях, используя метод
узловых потенциалов.
Ответ: ;
;
;
;
;
;
.