www.toehelp.ru

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию ...

/ / / 8.1. Определение неизвестной функции распределения

§ 8. ПРИМЕНЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К СТАТИСТИКЕ.

Математическая статистика - это раздел математики, в котором изучаются методы обработки и анализа экспериментальных данных, полученных в результате наблюдений над массовыми случайными явлениями. Таким образом, обработка результатов измерения (cм. § 7) является одной из задач математической статистики. В этом параграфе мы рассмотрим еще две задачи математической статистики.

8.1. Определение неизвестной функции распределения.

Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Разобьем диапазон наблюдаемых значений на интервалы ] X0, X1 [, ] X1, X2 [, ..., ] Xk-1, Xk [ одинаковой длины . Пусть mi - число наблюдаемых значений , попавших в i-й интервал. Разделив mi на общее число наблюдений n, получим частоту , соответствующую i-му интервалу: , причем . Составим следующую таблицу:

Номер
интервала
Интервал mi
1 ] X0, X1 [ m1
2 ] X1, X2 [ m2
... ... ... ...
k ] Xk-1, Xk [ mk

которая называется статистическим рядом. Эмпирической (или статистической) функцией распределения случайной величины называется частота события, заключающегося в том, что величина в результате опыта примет значение, меньшее x:

На практике достаточно найти значения статистической функции распределения F*(x) в точках X0, X1, ..., Xk, которые являются границами интервалов статистического ряда:

(65)

Cледует заметить, что F*(x)=0 при x<X0 и F*(x)=1 при x>Xk. Построив точки Mi [Xi ; F*(Xi)] и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 15). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе n испытаний с вероятностью, близкой к единице, эмпирическая функция распределения F*(x) отличается сколь угодно мало от неизвестной нам функции распределения F(x) cлучайной величины

Рис.15. Приближенный график эмпирической функции распределения. Рис.16. Гистограмма.

Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы ] X0, X1 [, ] X1, X2 [, ..., ] Xk-1, Xk [. На каждом интервале строят прямоугольник, площадь которого равна частоте , соответствующей данному интервалу. Высота hi этого прямоугольника равна , где - длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.

Рассмотрим функцию , которая в интервале ] Xi-1, Xi [ постоянна и равна hi. График этой функции называется гистограммой. Он представляет собой ступенчатую линию (рис. 16). С помощью закона больших чисел Бернулли можно доказать, что при малых и больших n с практической достоверностью как угодно мало отличается от плотности распределения непрерывной случайной величины .

Пример. Измерен диаметр у 270 валов хвостовика. Значения диаметра (в см) оказались в диапазоне 66-90 см. Разбив этот диапазон на интервалы диной 2 см (=2), получим статистический ряд (см. таблицу)
 

Дальше...

Социальные сети  

Реклама

Социальные сети