www.toehelp.ru

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию ...

/ / / § 7. ПРИЛОЖЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К ОБРАБОТКЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

§ 7. ПРИЛОЖЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К ОБРАБОТКЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ.

Пусть для определения неизвестной физической постоянной а производится n независимых измерений, причем считается, что грубые и систематические ошибки отсутствуют (см. § 6, п. 2). Возможный результат каждого из n измерений есть случайная величина, которую мы обозначим через (i — номер измерения). Так как каждое измерение не зависит от результатов других измерений, то мы имеем n случайных независимых величин . Обозначим через x1, x2, ..., xn фактически полученные результаты n измерений величины а. Таким образом, xi есть одно из возможных значений .

На основании закона больших чисел Чебышева (см, § 5, п. 2) мы можем утверждать, что с практической достоверностью для достаточно большого числа n измерений средняя арифметическая результатов измерений отличается от истинного значения физической постоянной сколь угодно мало, т. е. с вероятностью, сколь угодно близкой к единице, имеет место приближенное равенство

Оценим точность этого приближенного равенства. Для этого прежде всего заметим, что в силу основного закона ошибок (см. § 6, п. 2) каждый возможный результат измерения есть случайная величина, подчиняющаяся нормальному закону распределения вероятностей с одним и тем же математическим ожиданием, равным истинному значению а измеряемой величины: (i=1, 2, ..., n). Далее будем предполагать, что все измерения проводятся с одинаковой степенью точности (равноточные измерения). Поэтому дисперсии всех случайных величин должны быть одинаковыми, т. е. .

Сначала рассмотрим случай оценки неизвестного значения а, предполагая известным значение . Так как возможный результат i-гo измерения есть случайная величина , подчиняющаяся нормальному закону распределения вероятностей с математическим ожиданием и дисперсией , то случайная величина также имеет нормальное распределение с тем же математическим ожиданием , и средним квадратическим отклонением (см. § 4, п. 3). Поэтому плотность распределения вероятностей для средней арифметической имеет вид

где параметры распределения равны а и

Следовательно, вероятность того, что при n измерениях мы получим такую совокупность значений , что при любом интервал будет содержать а, на основании формулы (33) определяется соотношением

(58)
Интервал имеет случайные границы и . Соотношение (58) справедливо для любого значения . Вероятность не зависит от конкретных значений, которые принимают случайные величины и при возрастании числа измерений n в силу свойства функции Ф(х) возрастает (см. § 3, п. 4). Соотношение (58) показывает, что каковы бы ни были значения x1, x2, ..., xn полученные при измерении, имеет место формула
(59)
где . Величина называется средней выборочной. Формулой (59) в большинстве случаев пользоваться нельзя, так как обычно значение неизвестно. Поэтому рассмотрим случай, когда обе величины а и неизвестны.

Пусть случайная величина s2 определена соотношением

(60)
где . Можно показать, что величина s2 имеет математическое ожидание, равное , и дисперсию, равную , т.е.

(доказательство не приводим ввиду громоздкости вычислений). Применим к случайной величине s2 вторую лемму Чебышева (см. § 5, п. 1):

где . Подставляя значения M(s2) и D(s2), получим

(61)

Соотношение (61) показывает, что если , то , т.е. s2 стремится по вероятности к .

Рассмотрим величину

Так как есть одно из возможных значений s2, то при достаточно больших n с практической достоверностью можно утверждать, что имеет место приближенное равенство

(62)
где . Величину называют выборочной дисперсией.

На практике для оценки вероятности того, что истинное значение а измеряемой величины лежит в интервале , пользуются формулой (59), где вместо подставляют ее приближенное значение , найденное по формуле (62).

Итак, для достаточно больших значений n имеем

(63)
где
(64)

Интервал называется доверительным интервалом, а вероятность надежностью *.

Пример. Для определения процентного содержания хрома в стали были проделаны 34 измерения, результаты которых сведены в таблицу. Найти доверительный интервал с надежностью =0,9973 (Решение)

Дальше...


* Расчет по формуле (63) дает удовлетворительные по точности результаты при .

Социальные сети  

Реклама

Социальные сети