Ранее мы познакомились с примерами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, то есть раскрытия неопределенностей вида 0/0 и ∞/∞. Сейчас рассмотрим новое правило раскрытия этих неопределенностей.
Теорема (правило Лопиталя). Пусть
функции f(x) и g(x) дифференцируемы в некоторой
окрестности точки a, за исключением, быть может, самой
точки a, и пусть или
. Тогда, если
существует предел отношения производных этих функций
, то существует и предел
отношения самих функций f(x)/g(x) при x→а, причем
![]() | (1) |
Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.
Замечание. Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.
Например, найти . Этот предел существует
. Но отношение производных (1+cosx)/1=1+cos x при x→∞ не стремится ни к какому пределу.
Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее.
Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞.
Для раскрытия неопределенностей 1∞, 10, ∞0 нужно прологарифмировать данную функцию и найти предел ее логарифма.
Примеры.
Обозначим .
Прологарифмируем это равенство . Найдем
.
Так как lny функция непрерывная, то . Следовательно,
или
.
ФОРМУЛА ТЕЙЛОРА
Пусть функция y= f(x) задана на (a, b) и x0 Î (a, b). Поставим следующую задачу: найти многочлен P(x), значения которого в окрестности точки x0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значенийf(x) в окрестности точки x0 можно заменить более легкой задачей вычисления значений P(x).
Пусть искомый многочлен имеет степень n P(x) = Pn(x). Будем искать его в виде
![]() | (1) |
В этом равенстве
нам нужно найти коэффициенты .
Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств:
Пусть функция y= f(x) имеет производные до n-ого
порядка. Найдем коэффициенты многочлена Pn(x) исходя из условия
равенства производных.
Введем обозначение n! = 1·2·3…n, 0! = 1, 1! = 1.
Подставим в (1) x = x0 и найдем , но с другой стороны
. Поэтому
Далее найдем
производную и вычислим
Следовательно,
.
Учитывая третье условие и то, что
,
получим , т.е.
.
Далее . Значит,
, т.е.
.
Очевидно,
что и для всех последующих коэффициентов будет верна формула
Подставляя
найденные значения коэффициентов в формулу (1), получим
искомый многочлен:
Обозначим и назовем эту разность
n-ым остаточным членом функции f(x) в точке x0. Отсюда
и, следовательно,
если остаточный член
будет мал.
Оказывается, что если x0 Î (a, b) при всех x Î (a, b) существует производная f (n+1)(x), то для произвольной точки x Î (a, b) существует точка, лежащая между x0 и x такая, что остаток можно представить в виде:
Это так называемая формула Лагранжа для остаточного члена.
Формула
где x Î (x0, x) называется формулой Тейлора.
Если в этой формуле положить x0 = 0, то она запишется в виде
где x Î ( x0, x). Этот частный случай формулы Тейлора называют формулой МакЛорена.
РАЗЛОЖЕНИЕ ПО ФОРМУЛЕ МАКЛОРЕНА НЕКОТОРЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ
Таким образом, получаем
Используя эту формулу и придавая x различные значения, мы сможем вычислить значение ex.
Например, при x=1, ограничиваясь n=8, получим формулу, позволяющую найти приближенное значение числа e:
причем остаток
Отметим, что для
любого x Î R остаточный член
Действительно,
так как ξ Î (0; x), то величина eξ ограничена при
фиксированном x. При x> 0 eξ < ex.
Докажем, что при фиксированном x
Имеем
Если x зафиксировано, то существует натуральное число N такое, что |x|<N.
Обозначим Заметив, что 0<q<1, при n>N можем написать
Но , не зависящая от n,
а
так как q<1. Поэтому
Следовательно,
Таким образом, при любом x, взяв достаточное число слагаемых, мы можем вычислить ex с любой степенью точности.
Найдем последовательные производные от функции f(x)=sin x.
Подставляя полученные значения в формулу МакЛорена, получим разложение:
Несложно заметить, что преобразовав n-й член ряда, получим
.
Так как , то аналогично разложению ex
можно показать, что
для всех x.
Пример. Применим полученную формулу для приближенного вычисления sin 20°. При n=3 будем иметь:
Оценим сделанную погрешность, которая равна остаточному члену:
Таким образом, sin 20°= 0,342 с точностью до 0,001.
Здесь также для всех x.
Докажите формулу самостоятельно.
Найдем формулу МакЛорена для данной функции.
Подставим все найденные производные в ряд МакЛорена.
Можно доказать,
что если x Î (–1;1],то , т.е. выведенная формула справедлива при x Î ( –1;1].
При m≠Z данная функция определена при x> –1. Найдем формулу МакЛорена для этой функции:
И следовательно,
Можно показать, что при |x|<1
ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ
НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ВОЗРАСТАНИЯ И УБЫВАНИЯ ФУНКЦИИ
Вспомним сначала определения возрастающей и убывающей функций.
Функция y=f(x), определенная на некотором отрезке [a, b] (интервале (a, b)), называется возрастающей на этом отрезке, если большему значению аргумента x из [a, b] соответствует большее значение функции, то есть если x1 < x2, то f(x1) < f(x2).
Функцияy=f(x) называется убывающей на некотором отрезке [a, b], если меньшему значению аргумента x из [a, b]соответствует большее значение функции, то есть если x1 < x2, то f(x1) > f(x2).
Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке.
Функция y=f(x) называется постоянной на некотором отрезке [a, b], если при изменении аргумента x она принимает одни и те же значения.
Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции.
(-∞, a), (c, +∞) – убывает;
(a, b) – постоянная;
(b, c) – возрастает.
Применим понятие производной для исследования возрастания и убывания функции.
Теорема 1. (Необходимое и достаточное условия возрастания функции)
Доказательство.
Переходя в этом
равенстве к пределу при Δx→0, получим
, то есть f '(x)≥0.
Аналогичная теорема имеет место и для убывающих функций.
Теорема 2. Если f(x) убывает на[a,b], то на этом отрезке.
Если
на (a; b), то f(x) убывает на [a, b],в предположении, чтоf(x)
непрерывна на [a, b].
Доказанная теорема выражает очевидный геометрический факт. Если на [a, b] функция возрастает, то касательная к кривой y=f(x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tga≥0, а значит f '(x)≥0.
Аналогично иллюстрируется и вторая часть теоремы.
Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f '(x)>0 – для возрастания или f '(x)<0 – для убывания.
Примеры. Определить интервалы монотонности функции.
. Следовательно, f(x) – убывает на (-∞; 0) и (0; +∞).
Найдем промежутки, на которых производная заданной функции положительна или отрицательна методом интервалов.
Итак, f(x) – убывает на (–∞; –1] и [1; +∞), возрастает на отрезке [–1; 1].
.
Используя метод интервалов, получим f(x) убывает на (0; 1) и (1; e], возрастает на [e; +∞).