www.toehelp.ru

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию ...

/ / / Лекция №5. Производные некоторых основных элементарных функций

  1. y = xn. Если n – целое положительное число, то, используя формулу бинома Ньютона:

    (a + b)n = an+n·an-1·b + 1/2∙n(n – 1)an-2b2+ 1/(2∙3)∙n(n – 1)(n – 2)an-3b3+…+ bn,

    можно доказать, что

    Итак, если x получает приращение Δx, то f(xx) = (x + Δx)n, и, следовательно,

    Δy=(xx)nxn =n·xn-1·Δx + 1/2·n·(n–1)·xn-2·Δx2 +…+Δxn.

    Заметим, что в каждом из пропущенных слагаемых есть множитель Δx в степени выше 3.

    Найдем предел

    Мы доказали эту формулу для n Î N. Далее увидим, что она справедлива и при любом n Î R.

  2. y= sin x. Вновь воспользуемся определением производной.

    Так как, f(xx)=sin(xx), то

    Таким образом,

  3. Аналогично можно показать, что

  4. Рассмотрим функцию y= ln x.

    Имеем f(xx)=ln(xx). Поэтому

    Итак,

  5. Используя свойства логарифма можно показать, что

Формулы 3 и 5 докажите самостоятельно.


ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x.

  1. .
  2. (справедлива для любого конечного числа слагаемых).
  3. .
  4. .

    а) .

    б) .

Формулы 1 и 2 докажите самостоятельно.

Доказательство формулы 3.

Пусть y = u(x) + v(x). Для значения аргумента xx имеем y(xx)=u(xx) + v(xx).

Тогда

Δy=y(xx) – y(x) = u(xx) + v(xx)u(x)v(x) = Δuv.

Следовательно,

.

Доказательство формулы 4.

Пусть y=u(x)·v(x). Тогда y(xx)=u(xxv(xx), поэтому

Δy=u(xxv(xx) – u(xv(x).

Заметим, что поскольку каждая из функций u и v дифференцируема в точке x, то они непрерывны в этой точке, а значит u(xx)→u(x), v(xx)→v(x), при Δx→0.

Поэтому можем записать

На основании этого свойства можно получить правило дифференцирования произведения любого числа функций.

Пусть, например, y=u·v·w. Тогда,

y ' = u '·(w) + u·(v ·w) ' = uv·w + u·(v '·w +v·w ') = uv·w + u·v '·w + u·v·w '.

Доказательство формулы 5.

Пусть . Тогда

При доказательстве воспользовались тем, что v(x+Δx)v(x) при Δx→0.

Примеры.

  1. Если , то
  2. y = x3 – 3x2 + 5x + 2. Найдем y '(–1).

    y ' = 3x2 – 6x+ 5. Следовательно, y '(–1) = 14.

  3. y = ln x · cos x, то y ' = (ln x) ' cos x + ln x (cos x) ' =1/x∙cos x – ln x · sin x.
  4. Таким образом,

  5. Аналогично для y= ctgx,

ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ

Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Областью определения функции y = f(u(x)) является либо вся область определения функции u=u(x) либо та ее часть, в которой определяются значения u, не выходящие из области определения функции y= f(u).

Операция "функция от функции" может проводиться не один раз, а любое число раз.

Установим правило дифференцирования сложной функции.

Теорема. Если функция u= u(x) имеет в некоторой точке x0 производную и принимает в этой точке значение u0 = u(x0), а функция y= f(u) имеет в точке u0 производную y 'u= f '(u0), то сложная функция y = f(u(x)) в указанной точке x0 тоже имеет производную, которая равна y 'x= f '(u0u '(x0), где вместо u должно быть подставлено выражение u= u(x).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x.

Доказательство. При фиксированном значении х0 будем иметь u0=u(x0), у0=f(u0). Для нового значения аргумента x0x:

Δu= u(x0 + Δx) – u(x0), Δy=f(u0u) – f(u0).

Т.к. u – дифференцируема в точке x0, то u – непрерывна в этой точке. Поэтому при Δx→0 Δu→0. Аналогично при Δu→0 Δy→0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δu→0)

,

где α→0 при Δu→0, а, следовательно, и при Δx→0.

Перепишем это равенство в виде:

Δy= y 'uΔu+α·Δu.

Полученное равенство справедливо и при Δu=0 при произвольном α, так как оно превращается в тождество 0=0. При Δu=0 будем полагать α=0. Разделим все члены полученного равенства на Δx

.

По условию . Поэтому, переходя к пределу при Δx→0, получим y 'x= y 'u·u 'x . Теорема доказана.

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от "внешней" функции f, рассматривая ее аргумент просто как переменную, и умножить на производную от "внутренней" функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y 'x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем y 'x= y 'u·u 'x . Применяя эту же теорему для u 'x получаем , т.е.

y 'x = y 'x· u 'v· v 'x = f 'u (uu 'v (vv 'x (x).

Примеры.

  1. y = sin x2. Тогда .

ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ

Начнем с примера. Рассмотрим функцию y= x3. Будем рассматривать равенство y= x3 как уравнение относительно x. Это уравнение для каждого значения у определяет единственное значение x: . Геометрически это значит, что всякая прямая параллельная оси Oxпересекает график функции y= x3 только в одной точке. Поэтому мы можем рассматривать x как функцию от y. Функция называется обратной по отношению к функции y= x3.

Прежде чем перейти к общему случаю, введем определения.

Функция y = f(x) называется возрастающей на некотором отрезке, если большему значению аргумента x из этого отрезка соответствует большее значение функции, т.е. если x2>x1, то f(x2) > f(x1).

Аналогично функция называется убывающей, если меньшему значению аргумента соответствует большее значение функции, т.е. еслих2 < х1 , то f(x2) > f(х1).

Итак, пусть дана возрастающая или убывающая функция y= f(x), определенная на некотором отрезке [a; b]. Для определенности будем рассматривать возрастающую функцию (для убывающей все аналогично).

Рассмотрим два различных значения х1 и х2. Пусть y1=f(x1), y2=f(x2). Из определения возрастающей функции следует, что если x1<x2, то у1<у2. Следовательно, двум различным значениям х1 и х2 соответствуют два различных значения функции у1 и у2. Справедливо и обратное, т.е. если у1<у2, то из определения возрастающей функции следует, чтоx1<x2. Т.е. вновь двум различным значениям у1 и у2 соответствуют два различных значенияx1 и x2. Т.о., между значениями x и соответствующими им значениями y устанавливается взаимно однозначное соответствие, т.е. уравнение y=f(x) для каждого y (взятого из области значений функции y=f(x)) определяет единственное значение x, и можно сказать, что x есть некоторая функция аргумента y: x= g(у).

Эта функция называется обратной для функции y=f(x). Очевидно, что и функция y=f(x) является обратной для функции x=g(у).

Заметим, что обратная функция x=g(y) находится путем решения уравнения y=f(x) относительно х.

Пример. Пусть дана функция y = ex. Эта функция возрастает при –∞ < x <+∞. Она имеет обратную функцию x = lny. Область определения обратной функции 0 < y < + ∞.

Сделаем несколько замечаний.

Замечание 1. Если возрастающая (или убывающая) функция y=f(x) непрерывна на отрезке [a; b], причем f(a)=c, f(b)=d, то обратная функция определена и непрерывна на отрезке [c; d].

Замечание 2. Если функция y=f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций.

Пример. Функция y=x2 определена при –∞<x<+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотриминтервал 0≤x<+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ <x≤ 0 функция – убывает и обратная для нее .

Замечание 3. Если функции y=f(x) и x=g(y) являются взаимно обратными, то они выражают одну и ту же связь между переменными x и y. Поэтому графикомих является одна и та же кривая. Но если аргумент обратной функции мы обозначим снова через x, а функцию через y и построим их в одной системе координат, то получим уже два различных графика. Легко заметить, что графики будут симметричны относительно биссектрисы 1-го координатного угла.


ТЕОРЕМА О ПРОИЗВОДНОЙ ОБРАТНОЙ ФУНКЦИИ

Докажем теорему, позволяющую находить производную функции y=f(x), зная производную обратной функции.

Теорема. Если для функции y=f(x) существует обратная функция x=g(y), которая в некоторой точке у0 имеет производную g '(v0), отличную от нуля, то в соответствующей точке x0=g(x0) функция y=f(x) имеет производную f '(x0), равную , т.е. справедлива формула.

Доказательство. Т.к. x=g(y) дифференцируема в точке y0, то x=g(y) непрерывна в этой точке, поэтому функция y=f(x) непрерывна в точке x0=g(y0). Следовательно, при Δx→0 Δy→0.

Покажем, что .

Пусть . Тогда по свойству предела . Перейдем в этом равенстве к пределу при Δy→0. Тогда Δx→0 и α(Δx)→0, т.е. .

Следовательно,

,

что и требовалось доказать.

Эту формулу можно записать в виде .

Рассмотрим применение этой теоремы на примерах.

Примеры.

  1. y = ex. Обратной для этой функции является функция x= ln y. Мы уже доказали, что . Поэтому согласно сформулированной выше теореме

    Итак, (ex) ' = ex

  2. Аналогично можно показать, что (ax) ' = ax·lna. Докажите самостоятельно.
  3. y = arcsin x. Рассмотрим обратную функцию x = sin y. Эта функция в интервале – π/2<y<π/2 монотонна. Ее производная x ' = cos y не обращается в этом интервале в нуль. Следовательно, по теореме о производной обратной функции

    .

    Но на (–π/2; π/2) .

    Поэтому

  4. Аналогично

    Докажите самостоятельно.

  5. y = arctg x. Эта функция по определению удовлетворяет условию существования обратной функции на интервале –π/2< y < π/2. При этом обратная функция x = tg y монотонна. По ранее доказанному .

    Следовательно, y ' = cos2 y . Но .

    Поэтому

  6.  

  7. Используя эти формулы, найти производные следующих функций:

Социальные сети  

Реклама

Социальные сети